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A B S T R A C T  

Let 12 be a domain in C with three or more boundary points in C and 
R(w, ~2) the conformal, resp. hyperbolic radius of ~t at the point w E 
f~ \ {oo}. We give a unified proof and some generalizations of a number 
of known theorems that are concerned with the geometry of the surface 
Sf~ -- {(w,h) [ w • ~t,h -- R(w, gt)} in the case that the Jacobian of 
VR(w, ~), the gradient of R, is nonnegative on D. We discuss the function 
VR(w, Ct) in some detail, since it plays a central role in our considerations. 
In particular, we prove that VR(w, ~2) is a diffeomorphism of f~ for four 
different types of domains. 

1. I n t r o d u c t i o n  

Let D denote  the open un i t  disc and  ~ a domain  in C with three or more 

b o u n d a r y  points  in C. According to the R i e m a n n  ma pp i ng  theorem,  if ~ is 
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simply connected and w E fl \ {oc} is fixed, then there exists a unique conformal 

map f (w,  .) of D onto ~ such that  

f ( w , O ) = w  and df(w,z)  z=O dz = fz(w,O) > O. 

This quantity fz (w, 0) is called the conformal radius of Ft at the point w and 

will be denoted in the following by R(w, ft). If ~t is as above but not simply 

connected, the generalization of Riemann's mapping theorem due to Poincar~ 

(see, e.g., [1] and [11], p. 255) asserts that  there exists a unique universal covering 

map of D onto ~ which has the same normalization as the above conformal map. 

In this case the quantity fz(W, 0) is called the hyperbolic radius (see, e.g., [6]). 

We will use the abbreviation R(w, ~) likewise and use the terminus hyperbolic 

radius in any case. 

Note that  R(w, ~) = 1/An(w), where A~ is the density of the Poincar~ metric 

with the curvature K = -4 ,  i.e. the hyperbolic radius R satisfies Liouville's 

equation 

R( )AR(w) = IVR( )l - 4, e 

where AR denotes the Laplacian of R and VR its gradient. 

Concerning the behaviour of the hyperbolic radius near the point at infinity, 

it may be interesting that  in a neighbourhood of infinity the asymptotic relation 

R(w, - c ( c  \ + o ( 1 )  

is valid, where C(A) denotes the capacity of the plane set A (see [11], p. 313). 

To avoid unnecessary complications we, from now on, do not explicitly mention 

if the point at infinity has to be taken away from ~ because of the behaviour of 

the hyperbolic radius there. 

There are two motivations for the research presented in this paper. The first 

one is the possibility to understand famous classical results in terms of the 

gradient of R. The classical result of Lbwner [18] (compare [26], p. 8/9, also) 

on convex univalent functions may serve as an example. 

THEOREM A: A domain f~ C C is convex if  and only if 

The second motivation is given by a number of theorems and their applications 

on the geometry of the surface 

S~ = {(w,h) i w E ~ , h  = R(w,~)} 
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(see [9], [13], [14], [15], [16], [20], [29], [30]). As an example we mention 

THEOREM B: A domain fl C C is convex i f  and only  i f  R(. ,  ~)  is a concave 

function on ~.  

In a recent paper Kovalev [16] studied an analog of Theorem B for simply 

connected domains fl C C. He proved that  C \ f~ is a convex set if and only if 

the function R(., f~) is a locally convex function. 

Since the Jaeobian of the gradient of R is 

Ou 2 Ov 2 \ ~ , w = u + iv ~ fl, 

and a condition necessary for a real-analytic function to be convex or concave 

on f~ is the inequality 

J ( w , ~ )  >_ O, w c ~,  

we observe that  Theorem B and its generalizations are related to VR. Therefore 

the present paper is dedicated to the study of the mapping of ~ by the complex- 

valued function VR(., 9t). To do this, we fl'equently use the Wirtinger calculus. 

This, for example, leads to the formula 

VR(w,~)  - O R ( w , ~ )  i O R ( w , ~ )  _ 20R(w,~)  
Ou + Ov ~ w  ' w = u + iv E ~.  

The paper is organized as follows. In Section 2 we introduce as a central tool 

of our analysis the function ~ meromorphic in D and defined by the equation 

f " ( z )  2 
- - - ,  z c D  

(1) f ' ( z )  ~ ( z )  - z 

(compare [4] and [5]). We prove that  J ( f ( z ) ,  f ( D ) )  > 0 for z E D if and only 

if ~ or 1/qo is a holomorphic self-map of D (except in the eases where f ( D )  is 

a disc or a half-plane), i.e. ~: D --+ D, resp. 1/~: D --+ D. This enables us 

to use in what follows the theory of such maps connected with the names of 

Carath6odory, Denjoy, Julia and Wolff, especially the Grand Iteration Theorem 

(see [27], p. 78). 

In Section 3 we give a unified proof of Theorem B and its generalizations. 

Moreover, we prove that  the gradient map of ~t is a diffeomorphism if ~ or C \  ~t 

is a convex set, except in the cases where f~ is a half-plane, a strip or an angular 

domain. 

The fourth section is dedicated to the computation of the sets G(ft) = 

VR(fl,  f~) for polygonal domains f~. It turns out that  in these cases the bound- 

ary of G(fl) consists of hypocycloids and epicycloids. To avoid confusion we 
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mention that these epicycloids differ from those occurring in the Ptolemaic 

system. 

Section 5 extends the results of Section 3 to the case of doubly connected 

domains 12 such that C \  f~ is a convex set and the point at infinity is an isolated 

boundary point of ft. Further, we consider in some detail generalizations to 

Riemann surfaces. 

Section 6 deals with coefficient estimates for functions f that are solutions 

of (1) in a neighbourhood of the origin for a unimodular bounded holomorphic 

function ~: D -+ D such that ~(0) ~ 0. In particular, we prove generalizations 

of estimates proved in [4] and [5]. 

2. An analytic interpretation of J(w, fl) >_ 0 

Let ~ be the function defined by (1). It is clear that ~ is not changed by 

a linear transformation of f .  Further, a linear transformation of l~ doesn't 

influence the behaviour of the hyperbolic radius and its gradient. Actually, if 

a~ + b = {aw + b [ w E f~}, a ~ O, then the above definitions of R, VR, and J 

imply 

R(aw + b, a~ + b) = [aiR(w, ~), 

(2) V R ( a w  + b, a~ + b) = exp(i arga )VR(w ,  ~), 

J(aw + b, at2 + b) = lal-2 j ( w , ~ )  

and 

02 R(w, fl) / 2 02 R(w, fl ) 
(3) g ( w , ~ )  = 4~ - o- ow 12) . 

The relationship of the function ~ defined in (1) and the Jacobian J in the form 

(3) is given by 

LEMMA 1: Let f~ and f be as in the introduction. Then for any w E 12 \ {oc}, 

w = f ( z ) ,  z e D, the representation 

(4) g(w, l~) = 4 (1 -]~(z)[2)2 - ( 1  -[z[2)2[~'(z)[ 2 

i:(z) - zl Ii'(z)l 

is valid. 

Proo~ Using an appropriate conformal automorphism of D one immediately 

gets with the above abbreviations 

R(w, a) = I:'(z)l(1 -Izl  
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(compare, e.g., [6]). This together with the definition (1) of ~ yields 

(5) OR(w, ~2) If'(z)l (1 - fit(z) 
Ow -- / ' ( z )  ~ !z12 f ' ( z )  

_ _  _ ~)  _ If'(z)l  1 - ~ ( z )  
:,(z) ~-z~ : z  

Taking partial derivatives of (5) leads to 

o2R(w,  a)  02R(w,  a)  - R ( ~ ,  a ) : ' ( z )  
O~ ~ Ow 2 (~(z)  - z )2 ( f ' ( z ) )  2 

and 
02R(w, n) 1 - I~(z)l 2 

O-~Ow l~(z) - zl21f'(z)l" 
These formulas together with (3) imply (4), the assertion of our Lemma 1. 

PROPOSITION 2: The set of all functions qo that are meromorphic in D and 

satisfy 

J~(z) := (1 - Izl2)l~'(z)l - [1 - I~(z)121 < 0 for any z E D 

consists of the following three disjoint subsets: 

(a) There exists 0 E [0, 2~r) such that ~v(z) = e i°, z E D, 

(b) ~ or 1 /~ is a conformal automorphism of D, 

(c) ~ or 1 /~ is a holomorphic se/f-map o l D  not belonging to (a) or (b). 

In the cases (a) and (b) J~ vanishes identically on D, in the case (c) J~ is 

negative on D. 

Proof: We first suppose that  there exists zo E D such that  t~(zo)l = 1. Ac- 

cording to the maximum principle this implies that  there exists an arc 7 C D 

such that  Zo E 7 and t~(z)l = 1 for all z E 7. From the inequality J~(z) <_ 0 

we deduce that  ]~'(z)] = 0 for all z E 7. Hence, ~ ' (z)=0 for all z E D and 

therefore ~(z) - e i° for a fixed 0 E [0, 27r). Here, we have obtained case (a) of 

the proposition. 

Suppose now that  ]~(z)] # 1 for all z E D. This implies that  ~o or 1 /~ 

is a holomorphic self-map of D and the inequality J~(z) < 0 is exactly the 

Schwarz-Pick inequality for ~ or 1/~, respectively. Equality in this inequality 

is attained in one point if and only if it is attained in all points and ~ (or 1/~) 

is a conformal automorphism of D. This leads to case (b). 

Now, the rest of the assertion is evident. I 
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PROPOSITION 3: Let • and f be as in the introduction and let ~ be defined by 

(1). Then 

(a) I~(z)l _< 1 for all z E D if  and only if  R(.,f~) is a convex function, 

(b) [~(z)[ _> 1 for all z E V if  and only i f  R(., f~) is a concave function. 

Proof: The formula (5) implies that the equivalences 

~_> } 2 for all w Ef t  < }1 for all z E D ¢~ [VR(w,~)[{ 

a r e  valid. These equivalences together with Liouville's equation show that 

~_> }0 for all w E ~. < }1 for all E D ¢=~ AR(w,~){  z 

Since we know from Lemma 1 and Proposition 2 that the Jacobian of VR is 
nonnegative in both cases, the sign of the Laplacian of R decides whether R is 
convex or concave, which completes the proof of our assertion. I 

We conclude this section with a remark. From (1) it follows that 

1 + z f " ( z )  _ 1 + z / v ( z  ) z E D. 
S'(z) 1 - 

Hence, the inequality I~(z)] _> 1, z E D, is equivalent to the classical inequality 

zf"(z)  
R e k l + ( f ' ( z )  ] >0, zED,  

which in turn is equivalent to the convexity of f ( D )  (see [11], [12], [23]). 
Geometrically, the case I~(z)I < 1,z E D, is more delicate and rich. Here, 

one has to distinguish four cases at least. 
(1) The function ~ has a fixed point w E D such that : ' (w) = ~"(w) = 0. 
(2) The function ~ has a fixed point w E OD such that ~'(w) E [0, 1/3]. 
(3) The function ~ has a fixed point w E OD such that ~(w) = 1. 
(4) The remaining cases. 
The cases (1) and (2) are connected with several papers that deal with uni- 

valent functions f such that C \  f ( D )  is convex (see [4], [5], [12], [16], [17], [19], 

[22]). 
The case (3) leads to doubly connected domains ~ that have the point at 

infinity as an isolated boundary point and the case (4) is connected to several 
aspects of multivalent functions. 
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3. S imp ly  c o n n e c t e d  d o m a i n s  f~ w i t h  J(., f~) _> 0 

In the first assertion of this section we deal with angular domains and strips 

£t such that  ~ = a ~  + b(a # 0, a E [0, 2]), where the angular domains are 

translates of 

~ ={weC\{O}l l a rg~ l  < ~ / 2 } ,  ~ e  (0,2], 

and the strips are translates of 

f~o = {w e C I I Imwl < 1}. 

PROPOSITION 4 (compare [15] and [16]): The Jacobian J(., f~) vanishes identi- 

cally in ~ i f  and only i f  ~ is an angular domain or a strip. 

Proof: We first prove the sufficiency. 

sider the domains f ~ ,  a E [0, 2]. 

In the case a = 0 it is known that  

4 7rv 
R(w, ~o) = - cos 

zr -2-' 

Hence 
7fV 

V R ( w ,  f~0) = - 2 i  sin -~-, 

For a E (0, 2], using the classical case 

Without loss of generality we may con- 

w = u + iv,  ]vl < 1. 

J ( w ,  ~o)  - O, w E ~o. 

by straightforward computations we obtain that  

R(¢,~1) R(w, ~) '  w = ~ E ~ ,  

and 

O 
R(w,  £ta) = 2ar cos 

o~ 
J ( w ,  f ~ )  - 0, w e ~ ,  

( o) 
(6) V R ( w , ~ )  = 2e i° a c o s - -  - / s i n  , 

where w = re i°  E ~ and a E (0, 2]. 

Let now J(w, f~) =_ 0 in f~. In virtue of Lemma 1, J~(z) =_ 0 in D. Hence, we 

have to examine the cases (a), and (b) of Proposition 2. 

[d~l Idwl 

and the conformal invariauce of the hyperbolic metric 

R(~,D,) = 2~, ~ = ~ +i~/E 9tl, 
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Concerning case (a), we have to insert Vp(z) = e i° for a fixed 0 E [0, 27F) into 

(1) to get 
f"(z) 2 

- - -  z E D .  
: ' ( z )  eiO _ z '  

Integrating, we obtain that  there exist constants A ¢ 0 and B such that  

A 
- - + B ,  z E D .  

/ ( z )  - o _ z 

Thus, Q = f (D) is a half-plane. 

In case (b) of Proposition 2 for the function ~ there are two possibilities, 

~1 (z )  = e ~° z - zo e~ 01  - ~ z  or T~(z) = 
1 - ~ z  z - z0 

for fixed 0 E [0,27r), z0 E D. Let fj be a corresponding mapping function 

defined by (1) with ~ = ~j ,  j = 1, 2. 

We first prove that  ~j can't  have a fixed point w in D. If ~j(w) = w for some 

w E D then f j  has a pole at z = w. Since f is locally univalent, this is a simple 

pole. Therefore the function 

f / (z)  2 
2;--0.1 

has a holomorphic continuation at the point z = co. On the other hand, formula 

(1) implies that  the residuum of this function at the point z = co equals 

2~}(w) 

~ } ( w ) -  1" 

Hence ~}(w) = 0, which is impossible for the functions under consideration. 

Further, these functions have at most two fixed points col and w2 such that  

IWlW21 = 1. Since ~j has no fixed point in D, we conclude that  wl E OD and 

w2 E OD. Now, we again use (1) to see that  the function fj is holomorphic in 

D \ {wl,w2} and that,  according t o  I(~j(T)I - -  1 for T E OD, 

( T f"  ('r) "~ qO(T) + ~- 
Re 1 +  f ' ( r ) / = R e  !p(7) - - 7  - 0  

for T E OD \ {Wl,W2}. Consequently, the boundary of f~(D) consists of one or 

two analytic arcs with vanishing curvature. Hence, fj(D) is a half-plane or a 

strip or an angular domain. This completes the proof of Proposition 4. | 

We now consider a refined version of Theorem B. 
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THEOREM 5: The following statements are equivalent. 

(i) The convex domain f~ is neither a half-plane nor a strip nor an angular 

domain. 

(ii) The hyperbolic radius R(-, fi) is a strictly concave function. 

(iii) The function XTR(., ft) is a diffeomorphism of fl onto a domain G con- 

tained in the disc D2 = {( [ [([ < 2}. 

Proof: The equivalence (i) ¢* (ii) is a well known result due to Kim, Minda 

and Wright (see [15] and [20]). We see that  this equivalence is a consequence of 

Propositions 2 and 3, which also prove the implication (iii) ~ (ii). Therefore, 

we only have to show that (i) implies (iii). 

Let f~ be a convex domain and let f :  D --4 f~ be a conformal map of D onto 

fk It is clear that it is sufficient to consider the behaviour of the map g: D --+ f) 

defined by 

g(z) = v n ( f ( z ) , f l ) ,  z e D. 

Firstly, we suppose that  fl is a strictly convex domain bounded by a closed 

analytic curve. In other words, we suppose that f is holomorphic in D, i f ( z )  ~ 0 

for z E D, and ( ~I"(~)~ 
Re 1 +  i f ( z ) ] > 0 ,  z E D .  

The corresponding function ~, defined by (1), satisfies the inequality 

R e l + Z / ~ ( z )  >0,  z E-D. 
1 - z/qo(z) 

Consequently, [~(z)[ > 1, z E D, XTR(x + iy, f~) is real-analytic in D, and 

J ( f ( z ) ,  f~) > 0, z E D. Therefore, the map g is locally diffeomorphic in D. 
Formula (5) implies that  

(7) g(e ie) = 2iexp(i~(O)),  @ • [0,270, 

where 

(s) 

Since 

and 

7r 
• (0) = ~ + 0 + arg(f ' (e i°)) .  

[g(e~°)[ = 2, O ~ [0,27r), 

• '(o) = Re (1+  ) > O, 0 LO,2 ), 
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the map 

gioD: OD --+ OD2 

is a diffeomorphism. Due to the argument principle (see, e.g., [21]) we obtain 

that  g is a one-to-one map of D onto D2. Hence 

v n ( . ,  ~) = g o f - '  

is a diffeomorphism of ~ onto G = D2. 

Now, let ft be an arbitrary convex domain with the exceptions mentioned in 

(i). By Propositions 2 and 4 we know that  J(w, ft) > 0, w E ft. For a conformal 

map f :  D --+ ft we will consider a sequence f n ,n  E N, defined by 

n 
fn(z)  = f(rnZ), rn - n + 1' n E N. 

For any n E N, the function fn is holomorphic on D, f~(z) ~ 0, z E D, and 

ftn = fn(D) is a strictly convex domain bounded by a closed analytic curve 

(see, e.g., [11]). As we have shown before, 

gn = VR( fn( ' ) ,  fn(D))):  D --+ D2 

is a diffeomorphism. From (5) we conclude that  

gn(Z)-- ] f ' ( rnz) l (rn(1--  z 2~f' '(rnz) 2~), z e D .  

Now we use that  fn together with its derivatives converge as n -+ oc uniformly 

on any compact set contained in D according to Weierstrass' theorem. Hence 

gn -+ g as n -+ oc uniformly on any compact set contained in D. 

To complete the proof of Theorem 5 we observe that  g is a real-analytic 

function, that  its Jacobian is positive, since 

Jg( z ,n )  = J( f (z) , f~) l f ' (z)]  2 > O, z E D, 

and we use the following lemma. 

LEMMA 6 (compare [3]): Let g and g,~,n E N, be complex-valued functions in 

D such that G = g(D), gn(D) = Gn and 

(a) gn: D -~ Gn is a homeomorphism for any n E N, 

(b) g: D --+ G is a locally homeomorphic map, 

(c) for any r E (0,1), Dr = {z [ [z[ < r}, the sequence gnioD~,n E N, 

converges uniformly on ODr to giOD,, as n -~ ~ .  
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Then g: D -+ G is a homeomorphism. 

Proof: Let (o E G and let z0 E {z [ g(z) = 40}. We have to prove that the set 

{z I g(z) = ~o} \ {zo} is empty. 

The condition (b) of Lemma 6 implies that  the set {z [ g(z) = (0} has no 

accumulation point in D. Hence, there is a sequence rj E (]z0[, 1) such that 

g(z) ~ ~o for [z[ = rj and rj --+ 1 as j --+ co. From condition (c) we conclude 

that there exists a sequence n(j)  E N such that n(j)  ~ cc as j --+ oc and 

min ] g n ( j ) ( z )  - ~o]. max [ g ( z ) -  gn(j)(z)[ < IzI=rj 
Izl=rj 

By condition (a) the set {Z[gn(j)(z) =-- ~0} contains one point at most. There- 

fore, applying Rouch~'s theorem to the functions g - gnu) and gn(j) - 4o we 

see that the sets {z [ g(z) = ~o} \ {z0} and Drj are disjoint. Letting j --+ ec 

completes the proof of Lemma 6 and, in turn, of Theorem 5. I 

Remark: Evidently, if • is a convex domain and the logarithm of fl  of the 

conformal map f :  D --+ ~ belongs to the little Bloch space, i.e. 

lim (1 - Izl 2) f " ( z )  = O, 
,z1 1 S'(z) 

then the gradient image is the disc D2. This is not always the case. For example 

(see Section 4), the gradient image is a proper subset of the disc De if f~ is a 

convex domain bounded by a polygon. 

We now consider the case of simply connected domains ~ in C such that 

ec E ~. Note that the equivalences (i)¢:~ (ii) in Theorem 7 and in Theorem 8 

are due to Kovalev (see [16]). 

THEOREM 7: Let f~ be a simply connected domain in -C such that oo E f~. Then 

the following statements are equivalent. 

(i) C \ f~ is a convex set. 

(ii) R(., f~) is a strictly convex function in f~ \ {oe}. 

(iii) The gradient image VR(f~, f~) is an unbounded domain G such that 

oo E G C {( [ [~[ > 2} and VR(.,  f~) is a diffeomorphism of f~ \ {oo} onto 

G \ {oo}. 

THEOREM 8: Let f~ be a simply connected domain in C. Then the following 

statements are equivalent. 
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(i) c~ 6 0~  and C \ f~ is a convex set with the exception of half-planes and 

angular domains. 

(ii) R(., f~) is a strictly convex function in f~. 

(iii) VR(.,  f~) is a diffeomorphism of fl onto a domain G contained in the 

annulus A = {(  I 2 < I¢1 < 4}. 

The proofs of Theorem 7 and Theorem 8 are similar. As a consequence of 

(iii) we have in both cases that  

IVR(w,~)I I OR(w,~) 
2 - Ow > 1 ,  w E g t .  

Due to formula (5), we obtain that  I~(z)l < 1, z • D. This together with 

Propositions 3 and 4 implies (ii). 

The implications (ii) =~ (i) are proven in [16]. A new proof of them which is 

necessary for us to identify the remaining cases from Section 1 will be given in 

Section 5, below. Hence, we have to prove that (i)=v(iii). 

Suppose that (i) holds. Without  loss of generality we may assume that 0 E l~ 

and consider a conformal map f:  D ~ C such that f (w) = oo, 0 < w ~_ 1, and 

f has an expansion of the form 

OO 

f ( z )  = z + F _ ,  a k z k '  Izl < "~. 

k=2 

The following inequalities are known (see [7], [11], [23], [19], [17], [4], [5]): 

la2l>l,l(1-[z[2) f''(z) 2~ >2, i f~•(0,1)  
- , f ' ( z )  - ' 

and 
f"(Z) 

2 >__ I~I  >__ 1,4 >__ I(1 - I z l  2) 
f ' ( z )  

Again, formula (5) implies that IVR(w,~)I  

IVR(w,~)I  >-- 2, w e 12, i f c~  • O~. Since 

w • ~, we may consider a map g defined by 

I - - - 2 2  i>2,  ifw 1. 

>_ 2, w E 12, i f c~  E ~ a n d 4 _ >  

VR(w,  ~) doesn't  vanish for any 

g(z) = VR( f ( z ) , l~ ) ,  z e D, 

and, following the proof of (i)~(iii) in Theorem 5 with respect to 1/g, easily get 

that g is a diffeomorphism of D onto G unless ~t is a half-plane or an angular 

domain. As above, this is accomplished in two steps. 
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STEP 1: If C~ E f~ and 0f~ is a strictly convex analytic curve, then 1/g is a 

function real-analytic in D such that  for the Jacobian of 1/g the inequality 

is valid. Since 

J ( f ( z ) ,  f )lf'(z)l 2 
J1/g(z ,D) = iVR(f(z) ,gt)12 > O, z e D, 

1 - ~exp(-i¢2(O)) 
 (eio) 

where q~ is an increasing function defined by formula (8), we obtain that  

1/g: D --+ D1/2 is a diffeomorphism. 

STEP 2: We construct a sequence of conformal maps fn: D --+ ~tn, n E N, such 

that  f~ ~ f uniformly on compact subsets in D as n --+ c~ and 0~,~ satisfy the 

condition of Step 1. The existence of such a sequence is trivial if ¢c E 12. For 

the case oc E 01~ this is proved in [16] and [4]. Since the functions 1/g~ defined 

by 
1 1 

g (z) 
converge uniformly on compact subsets of D to 1/g as n ~ c~, we can use 

Lemma 6 to complete the proof. 

The proofs of Theoem 7 and Theorem 8 are complete. 

4. G r a d i e n t  images  of  polygonal domains 

We begin with a simple example. Let w = f(z) = z + l / z , z  E D. Since 

C,\ f(D) = [-2, 2] is a convex set, VR(-, f(D)) is a diffeomorphism of C \  [-2,  2] 

by Theorem 7. Therefore, to find the gradient image it is sufficient to find its 

boundary. From (1) and (5) it follows that  ~(z) = z 3 and 

( ~ ) 1 - z ~ 3  
g(z)= VR z+ ,f(D) = 2 1 1 - Z 2 [ z ( l _ ~ 2 ) 2 ,  z E D .  

Hence, 
- 2 i  for a n y O E ( 0 , r ) ,  

lim g(z) = 2i for any O E (~r, 2~). z.-~iO 

Moreover, it is clear that  g(z) has no limit as z -~ +1. Straightforward compu- 

rations show that  the set of all limit values of g(z) as z --+ 1, z E D, is a curve 

71 given by the parametric equation 

£1(t) = 2 e  ~ 2 c o s ~ - i s i n  , t •  (-Tr, lr). 
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This is one branch between the two contact points 2i and - 2 i  of an epicycloid 

that  is described by a point on a circle of radius 2 rolling on another circle of 

radius 2 (compare, e.g., [8], p. 144). Since g(z) = - g ( - z ) ,  the gradient image of 

C \  [-2,  2] is the set of all points outside the two branches of the above epicycloid, 

where the second branch is described by 

 2(t) 

One may observe that  71 coincides with the set of values of VR for an angular 

domain with opening angle 2r~, which is a branch of an epicycloid (compare 

(6)). This observation can be extended: If f~ is a polygonal domain, then the 

gradient image is bounded by branches of epicycloids or hypocycloids. 

PROPOSITION 9: Let ft be a simply connected domain in C or in C. I f  the 

boundary of fl is a polygon with inner angles zcak, corner points wk and sides 

(Wk,Wk+x),k = 1 , . . . , n , w ~ + l  = wl, then 

(a) VR(., f~) is a real-analytic function on -~ \ { w l , . . . ,  Wn , oc } , 

(b) the gradient image of a side (wk, wk+l) is a point ~k such that [(k[ = 2, 

(c) the set of all limit values of V R  as w --+ wk is a curve 7k that joins ~k-1 

with (k and is defined by a parametric equation 

(k(t) = 2e~(Ck+~':t)(ak cost -- i s in t ) ,  t E [--~/2,~/2], 

where ck is a real constant. 

Proo£' Let f be a conformal map of D onto ~. According to the Schwarz- 

Christoffel formula, the logarithm of f l  has an analytic continuation onto 

\ { a l , . . . , a n } ,  where ak = f - l ( w k ) .  This together with formulas (5), (7) 

and (8) yield (a) and (b). 

Moreover, the Schwarz-Christoffel formula implies that  the function 

/ " ( z )  1 - 

/ ' ( z )  z - a k  

has an analytic continuation at the point z = ak. Hence, the set of all limit 

values of VR as w --+ wk = f (ak)  is given by the set of the limit values of the 

function 

as z --+ ak. Direct computations yield (c). This completes the proof of 

Proposition 9. | 
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5. G e n e r a l i z a t i o n s  to  R i e m a n n  sur faces  a n d  to  d o u b l y  c o n n e c t e d  

d o m a i n s  

So far we have considered functions f and p meromorphic in D such that  (1) 

was satisfied, i.e. 
2f'(z) 

~(z)  = z + f " ( z )  ' z e D, 

and f was a universal covering function of a domain ~. 

If ]~(z)] > 1,z E D, then f can be shown to be a convex univalent function 

without assuming that  it is a covering function. This is a classical result, as we 

have seen above. 

What  can be said about f if (1) is fulfilled, I~(z)l < 1, z E D, and we do not 

impose further conditions on f ?  Unfortunately, we have no general existence 

theorem for the solutions f of (1) with given 4. Since (1) relates the fixed 

points of ~ to the zeros, poles and singularities of f ' ,  it is not surprising that 

there are close relations between our question and the theory of unimodular 

bounded holomorphic functions due to Carath4odory, Denjoy, Julia and Wolff. 

We will need the following statements, which sometimes are quoted as the Grand 

Iteration Theorem (see [27], p. 78 and compare also [24], p. 82 and [10]). 

THEOREM C: Let ~ be a holomorphic self-map of  D that is not a conformal 

automorphism of  D with a fixed point in D. Then there is a unique point w E D 

such that the iterates 

= o . . . o  

converge to w as n --+ oz uniformly on any compact subset of  D and 

(C1) i f  w c D, then ~ has no fixed point in D \ {w}, and 

~(w)--a ; ,  0 < [ ~ ' ( w ) l < l ,  

(C2) i f  w C O D  (Denjoy-Wolf f  point of  ~), then ~ has no fixed point in D 

and ~ and ~ have angular limits at w such that 

where 

~ ( w ) = w ,  0 < ~ ' ( w ) < l ,  

Re ~+z 
~'(w) = sup w-z 

zED Re ~+~(z) " ~-~(z) 

Suppose now that  f is a function meromorphic in D and that T is a conformal 

automorphism of D. Clearly, the Riemann surfaces f ( D )  and ( f  o T ) (D)  are 
identical. 
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PROPOSITION 10: Let ~o be a holomorphic self-map of D and T a conformed 

automorphism o l D .  I f  f is a solution of equation (1), then 

(9) 

where 

f " ( z )  2 

] ' ( z )  ( o ( z )  - z '  
z E D ,  

f = f o T  and ~ 5 = T - l o ~ o T .  

Proof: Let 
T ( z )  = e i~ z - a 

1 - "hz' 

where a E [0, 2r) and a E D are fixed. By straightforward computations, we 

f " ( z )  f " ( T ( z ) ) ~ , ,  , T" ( z )  2T'(z) T"(z )  
]-~z) - ~ ~ ~z~ + ~ - T(~(z)) - T(z) + T,(z---~ 

2 1 - "5(o(z) 2-5 2 

~(z))  - z 1 - -hz 1 - -hz ~(z)  - z 

get 

This is the assertion. I 

Firstly, we shall examine the case (C1). Let 

f z ( ~  s(o.') + 1) 
O ( z ) = e x p  - t  + t - - -w dt, 

J W  

where s(w) = (1 + ~'(w))/(1 - ~'(w)). Note that  the integrand is holomorphic 

at the point t = w. 

LEMMA 11: Let ~ be a holomorphic self-map of D such that ~(w) = w and 

~r (w) E -D for a point w E D. Then the following statements are valid. 

(a) If  [~'(w)] < 1, then equation (1) has a meromorphic solution f i f  and only 

i f  

s(~)=meN\{O) and ~(m)(~)=O. 

For such a function ~, any solution f of equation (1) has a pole of order m at 

the point z = w, f is holomorphic in D \ {w}, and f ' ( z )  ~ O, z E D \ {w}. 

(b) I f  I~'(~)[ = 1, then (1) has no meromorphic solution, i.e. there is no 

single-valued solution of  (1) for an elliptic conformed automorphism of  D. 

Proof: (a) It follows from (C1) that  for any point in D \ {w} there exists a 

solution f~ of (1) holomorphic in this point and not vanishing there. But in 

general these local developments do not fit together to a solution holomorphic 
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and single-valued in D \ {0:}. This depends on the behaviour of ~ in the point 

z = w. Integrating (1) we find 

f ' ( z )  C ~(z) = z E D ,  C = c o n s t . ~ 0 .  
(Z -- ~d) s(w)q' l  ' 

Clearly, f '  is single-valued if and only if s(w) = m E Z. The condition [~(w)[ < 1 

implies m > 0. Moreover, f is single-valued if and only if ~(m)(w) = 0. 

(b) An elliptic automorphism of D has no fixed point on OD and is holo- 

morphic on D. Hence, f is holomorphic and locally univalent on OD. Since 

I (T)l = 1 and ~(T) -- 7 # 0, r E OD, 

we obtain that  the curvature of the closed analytic curve w = ](v) ,  v E OD, is 

zero, which is impossible. I 

Remark: We consider the case m = 1 of Lemma 11. Here, (I)~(w) = - ~ ' ( w )  = 

0. Hence, a meromorphic solution of equation (1) exists and has a simple pole 

at w if and only if ~(w) = w E D, ~'(w) = ~"(w) = 0 (compare [4]). 

Next, we describe solutions of (1) with ~(w) = w E D using a set of mero- 

morphic functions with known geometric properties. 

Let m E N \ {0} and let EC(m) be the set of functions F such that F has a 

pole of order m in the point at infinity, F is holomorphic and locally univalent 

in C \ D and 
~F"(~) ~ 

R e k l + ( F ' ( ~ )  ] > 0 ,  ( E C \ D .  

THEOREM 12 (see [4] for m = 1): The following statements are equivalent. 

(i) The function f is a meromorphic solution of equation (1) for a holomorphic 

self-map ~ o l D  such that ~(w) = w E D,~o'(w) E D. 

(ii) For a fixed w E D there is a function F E EC(m), m E N \ {0}, such that 

Proo~ Let 

f ( z ) = F ( 1 - w z ~  z E D .  
\ Z - - S d  / '  

Z - -  b3 

T ( z )  - 1 - 

We consider the functions ] = l o T ,  ~ = T -1 o~oT.  If (i) holds, then qS(0) = 0 

so that,  by the Schwarz lemma, the condition [~5(z)[ < 1, z E D, is equivalent 

to the inequality 
+ z 

< 0 ,  z E D .  
- z 
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From Proposition 10 and Lemma 11 it follows that (i) is equivalent to the 

following statement. 

(iii) The function ] is holomorphic and locally univalent in n \ {0}, ] has a 

pole of order m = (1 + qS'(O))/(1 - qS'(O)) at z = 0 and 

R e \ l + ( f ' ( z )  / <0,  z E D .  

Taking F(~) = ] (1/ I )  shows that (ii)¢v(iii). This completes the proof of 

Theorem 12. I 

Remark: It is evident that there is an analog of Theorem 12 in the case that 

s(w) = m E N \  {0}, but ¢(m)(w) # O. For such a function ~ the equation (1) 

has solutions with a logarithmic singularity. For example, if ~(z) = cz2/(2-cz) ,  

z E D, c E D \ {0} fixed, then a solution f of (1) is 

f (z )  = 1/z + clogz. 

Now, suppose that ~ has no fixed point in D. This implies that (1) has 

solutions that are holomorphic and locally univalent in D. We will look for 

geometric criteria to describe the Riemann surface f(D).  An attractive way is 

to get f using limits of functions F E EC(m). To do so, we have to approximate 
functions ~ satisfying (C2) by functions ~ satisfying (C1). In principle, one may 

obtain the following proposition. 

PROPOSITION 13: Let ~ be a holomorphic self-map of D satisfying (C2), i.e. 

~(w) = w E OD, ~'(w) E (0, 1]. Then, the following statements are equivalent. 

(i) ~'(w) E (0, ½]. 
(ii) There exists a sequence Tn, n E N, of holomorphic self-maps of D such 

that ~n(w) = w E D, ~ ( w )  = ~ ( w )  = 0 and ~ --+ ~ as n -~ cc uniformly on 

compact subsets of D. 

We have no direct proof of Proposition 13. Via known results it is equivalent 

to the next theorem. 

THEOREM 14: Let f and ~ be meromorphic functions satifying equation (1). 

The following statements are equivalent. 

(i) f is holomorphic and univalent in D. C \ f (D)  is a convex set. f is 

continuous on -D with the exception of a point w E OD and f (z)  --+ oo as 

z ----~ cd .  

(ii) ~ is a holomorphic self-map of D that has the Denjoy-Wolff point at the 

point w = ~(w) E OD such that ~'(w) E (0, ½]. 
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(iii) ] is a function holomorphic and locally univalent in D such that 

( ( zf"(z)~5 
Re 2w3w---+Zz 1 +  f '(z) ]] >0 ,  z E D ,  

for a point ~o E OD. 

Proof." (The major part of the proof of this theorem is based on an unpub- 
lished manuscript of Ch. Pommerenke that he had sent to the authors during 
discussions on [5].) 

The proof of (i)~(ii) is given in [4]. 
For the proof of (ii)=~(iii) let us denote 

1 f"(z) 
b -  ~'(w) E [3, oc) and q = f '(z)" 

According to the Julia-Wolff Lemma (see (C2) of Theorem C) the inequality 

Re ( l l + ~ ( z ) l + z ~  
- ~ o ( z ) - b l - z ]  >_0, z E D ,  

is valid. Since 

and 

( l + z ~  1-1z l  2 
Re ~i  - - - ~ J  - ~ i :  

(1 + ~o(z)~ = Re (1 + z ) q + 2  ( 1 - H 2 ) M 2 - 4 R e ( l + z q )  
Re 1-- ¢(z)]  (1 - z ) q -  2 = I (1 - z )q -212  ' 

the last inequality is equivalent to the inequality 

i - I z l  ~ (1- Izl2)lql 2 - 4Re(1 + zq) >_ b ~ ( l l  - zl21ql 2 - 4Re((1 - z)q) +4). 

This yields 

q 
0 _> ( b -  1)lql 2 - 4 R e i - -  ~ + - -  

= ( b - 1 )  q b 2 b l l l z 2  

4b 4 R e ( l + z q )  + 
i - l z l  2 1 - I z l  2 

4b 1 4 R e ( l + z q )  - - +  
b -  1 I1 - zl 2 1 - I z l  2 

As b > 1, we see that the inequality 

b 1 - 1 z l  2 
(10) Re ( l+zq )>_0 ,  z E D ,  b - 1 {1 - zl 2 
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is valid, which yields (iii) for b _> 3. 

In the proof of (iii)=~ (i) we use that,  according to the Riesz-Herglotz formula, 

(iii) implies the representation 

( z+"(z)hf,(z) ] 51S. ll+e-i°z 31 + z 1 + = --------~-d#(O), 
2 1 - z  e-,~ z . . 

where # is a probability measure on [-zr, 7r] such that f_~ d#(O) = 1. Integra- 

tion of this formula yields 

i f ( z ) =  f ' (O)(1-  z ) -3exp(  f _ i  l o g ( l - e - i °  z)dtt(O)). 

We can approximate # by a sequence of point measures/tn,  n E N, such that 

d#n(Onk) = an~ e (0,1] 

and 
n 

Z auk = 1,O~ 1 < . ' .  < On~ < Onl + 27r. 
k = l  

Thus, we get a sequence of holomorphic functions fn with the derivatives 

n 

fin(Z) = f '(0)(1 - z) -3 H ( 1  - e- '°"~z) ~"k, z e D. 
k = l  

A little analysis shows that the fn belong to the family of close-to-convex func- 

tions introduced by Kaplan (see, e.g., [23], p. 51). This implies that  these func- 

tions are univalent in D. At the same time, the fn are conformal maps of D 
onto a polygonal domain by the Schwarz-Christoffel formula. Since an~ E (0, 1], 

the sets C \ fn(D) are convex polygonal sets. Letting n -+ c~, we get (i). The 

proof of Theorem 14 is complete. | 

1 1 Next, we shall consider the case ~g(w) E (~, ] at the Denjoy-Wolff point of 

~o. The solutions of (1) corresponding to such a function ~ are non-univalent in 

D. Actually, if f is univalent then C\ f (D) is a convex set by Kovalev's theorem 

[16], so that ~'(w) _< 1/3 by Theorem 14. The next two assertions show that 

one has to distinguish between the case ~'(w) E (½, 1) and the case ~'(w) = 1. 

PROPOSITION 15: Let ~ be a holomorphic self-map o lD  that has the Denjoy- 
1 1 Wolff point w = ~(w) E OD such that ~'(w) e ( ~ , ) .  Then any solution f of 

equation (1) is holomorphic and locally univalent in D and has the following 

properties. 
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(a) Let b = 1/~'(w) and 

( zf"(z)  b w + z  1 +  ~--T~- ],  z E D .  P(z) - b -  l w - z 

Then Re P(z) > O, z E D. 
(b) f is at most p-valent in D with 

1 + ~'(w) 
P -< 1 - ~a'(w)' 

i.e. for any Wo E C the set {z E D [ Wo = f(z)} contains at most p points. 

Proof: We get assertion (a) following the proof of inequality (10) in the proof 
of Theorem 14. The inequality is strict according to the minimum principle for 
harmonic functions, since Re(P(0)) = (b - 1) -1 > 0. 

For the proof of (b), let w0 E C and N(wo, f, r) be the number of w0-points 
in the disc Dr. If f (z)  ~ Wo for [z[ = r, r E (0, 1), then 

1 f2~ reiOf,(reiO) 
N(wo, f , r )  = 2-~ Jo ~ - - - ~ o o  dO 

by the argument principle. Now, we recognize that (1) implies that for any 
r E (0, 1) the inequality 

b ( r ) = f 0  2~ R e ( l  + rei° f"(re i°)~fd  ] 

-<Refo 2~ ( P(re i° )+ b b- 1 -ll +wrei°~dO=2ZC(b2--b-1 ~re i° ] 

is valid. From Radon's inequality ([25], see [3] for an adaption and [28] for 
another proof) 

N(wo, f, r) < b(r)/2m 

The last inequalities imply that 

b + l  1 + ~'(w) 
N ( w o ,  f ,  r )  < - -  - 

b - 1 1 - ~'(w) 

Letting r ~ 1 gives the assertion (b). This completes the proof of Proposition 

15. I 

Remark: It is known that any covering map f: D --+ 9 for a multi-connected 
domain ~ is an oc-valent function. Hence, f can be a covering map and a 
solution of (1) if and only if ~a'(w) = 1 at the Denjoy-Wolff point of ~a. 
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THEOREM 16: Let f~ be a doubly connected domain in C and f: D -~ 12 an 

universal covering map of D onto fL The following statements are equivalent. 

(i) The point at infinity is an isolated boundary point of 12 and C \ 12 is a 

convex set. 

(ii) The function ~ defined by 

2f '(z)  
: ( z )  = z + f " ( z )  ' z E D, 

is a holomorphic self-map of D that has a Denjoy-Wolff point co with ~ ( w )  = 1, 

and ~ is not an automorphism of D. 

(iii) R(., f~) is a strictly convex function. 

(iv) VR(.,12) is a diffeomorphism of 12 onto a domain G contained in 

{¢12< 

Proof: We first prove the chain (i)=~(ii)~(iii)~(i) of implications. Suppose 

(i) holds. The function fl  defined by 

l + z  
- - ,  z E D, ¢ = f l (z)  = exp 1 _ z 

is a universal covering map of O onto E = {( [ 1 < [¢] < oo}. Because of 

the convexity of C \ f~ there exists a function F E Ec(1) such that  f = F o f l .  
Straightforward computations give 

R(¢, E) -- 2[¢[ log([¢l), R(w, ~) = R(¢, E)[F'(¢)[, 

and 

_ ~F"({) log(]{])), (11) OR(w, 12) IF'({)] e - i °  (1 + (1 + - - )  
Ow F'(¢) \ F'(¢) 

where w = F(( ) ,  ( = [~[e ie E E. Since 

¢F"(¢) 
Re (1 + F'(~-----~) > 0, 

we get 

CzE, 

[OR(w,~) (1 + F ' ( ( )  ] Ow ] -> 1 + Re ( F " ( ( ) )  log(i([ ) > 1, 

so that Iqo(z)I _< 1, z E D, according to formula (5). Since ~ is a doubly 

connected domain and oo ~ 12, we conclude that ~o is a holomorphic self-map of 

D and there is a Denjoy-Wolff point co such that ~,o'(co) = 1 (see Propositions 4, 

12, 15, and Theorem 14) and J~o(z) < O, z E D. Thus, (ii) holds. 
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The implication (ii)~(iii) is a simple consequence of Proposition 2 and 

Proposition 3. 

The implication (iii)~(i) is proved in [16]. 

Now we prove the chain (i)~(iv)~(ii i)  of implications. We see that the 

implication (iv)~(iii) is trivial. Now we show that (i), (ii), and (iii) imply (iv). 

The function VR(., ~) is locally diffeomorphic in ~, since J(w, f~) > 0, w E 12. 

Next, we follow the proof for simply connected domains with little but important 

differences. Namely, instead of VR(f(z) ,  l~) ( f  is not univalent) we consider a 

function g defined by 

g(i) = VR(F(0, ( e E, 

with a univalent function F E Ec(1). Due to (11) the function g is given by an 

explicit formula. In particular, we have that g(() ~ oc as ( -+ oc. Taking 

and 

1 E}, N, 

we verify that gn is locally homeomorphic in E\{oc},  gn(~) -+ (x~ as ( -+ co, and 

gnll~l=l is an homeomorphism. Consequently (see, e.g., [2]), g~ is a homeomor- 

phism. Using Lemma 6 applied to 1/gn(1/z) we get that g is a homeomorphism, 

too. This completes the proof of Theorem 16. | 

6. Es t ima tes  for Taylor coefficients 

It this section we consider the Taylor coefficients of local developments of solu- 

tions of the differential equation (1) for a unimodular bounded function ~. For 

the sake of simplicity we restrict our investigations to a neighbourhood of the 

origin. Concerning this case, in [4] and [5] estimates for the Taylor coefficients 

of solutions of (1) that are univalent in D have been proved. We generalize 

these results as follows. 

THEOREM 17: Let ~ be a holomorphic self-map of D such that ~(0) ~ O. 

Fhrther, let f be a solution of (1) with an expansion 

f(z)  - f(O) = Z ~ Z akzk~ 
f'(O) k=2 
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which is valid in some neighbourhood of the origin. Then 

la3-a~[ < [a212-1 and ]anl > l , n  > 2. 
- 3 - - 

E q u a l i t y  in the first inequality occurs i f  and only i f  

1) =: = 

for some a >_ 1 and ~ E OD. [a,~[ = 1 for one n >_ 2 and in turn for all n >_ 2 

occurs i f  and only i f  f ( z )  = f(1,  ~; z) for some ~ E OD. 

Proof'. The proof for lanl _> 1, n >_ 2, exactly follows the proof for this inequality 

for functions f meromorphic and univalent in D that was given in [5]. For the 

proof in the general case we only need a slightly stronger version of the coefficient 

results on quasi-subordinate function. This is the content of the next theorem 

that generalizes results of Rogosinski and Robertson and uses the Littlewood 

theorem on subordinate functions for its proof, as usual (for details see [23], 

chapter 2 and [5]). 

THEOREM 18: Let the functions F and G be defined and holomorphic in a 

neighbourhood of the origin, where they have the expansions 

o o  o o  

F(z)  = ~ Anz n and G(z) = E B,~zn. 
n----0 1~:0 

If  there exist two unimodular bounded holomorphic functions ~1 and ~2 such 

that 

F(z)  = ~1 (z)C(z~2(z))  

in a neighbourhood of the origin, then for any n >_ 0 the inequality 

[Ak[ 2 <_ [Bk[ 2 

k = O  k=0  

is valid. 

For the proof of [a3 - a~[ <_ ([ a2 [2 _ 1)/3, we use a local version of Lemma 1 and 

Proposition 2 and the condition that  ~ is a unimodular bounded holomorphic 

function. Straightforward computations show that 

(12) J , (0 )  < 0 

is equivalent to the inequality in question. Equality at the origin occurs in (12) 

if and only if the Jacobian vanishes identically. As in the proof of Proposition 
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4, we obtain that  this is true if and only if f ( z )  = f ( a , w ;  z) where a and w are 

as above. This completes the proof of Theorem 17. II 

ACKNOWLEDGEMENT: The authors thank Ch. Pommerenke for permission to 
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